基于暗通道先验原理的偏振图像去雾增强算法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

军内重点科研基金项目资助


Dehazing and enhancement research of polarized image based on dark channel priori principle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在装备试验与测试中,常规光学成像系统极易受气象环境(如雾霾、沙尘等)影响,导致探测距离、成像效果、测量精度等受到大幅限制,从而严重影响目标成像效果及关键参数获取。如何增强雾霾条件下光学探测识别能力及成像质量,成为了当前急需解决的关键问题。本文利用偏振成像优势,结合暗通道先验原理,提出了基于暗通道先验原理的偏振图像去雾增强算法。该算法首先利用采集到的偏振图像提取偏振特征,计算偏振度和偏振角;同时,采用基于区域增长算法自动提取出天空区域,对天空区域进行大气光参数估计,获取大气光偏振度及偏振角相关参数估计;然后,结合暗通道先验原理,获取无穷远处大气光强,进而计算各像素点的大气光强;最后,建立在大气物理退化模型基础上,实现图像去雾增强。实例分析与验证中,通过主观评价与客观评价两种方法,对比本文提出的方法和常见其他方法,实际结果表明,本文算法去雾增强能力较强,能有效提升光学系统的探测识别能力及成像质量,对雾霾条件下武器装备关键参数获取具有重要意义。

    Abstract:

    n equipment test,conventional optical imaging system is very vulnerable to meteorological environment(such as haze,sand and dust),which results in the detection distance,imaging effect and measurement accuracy being greatly limited,thus seriously affecting the imaging effect of the target and the acquisition of key parameters. How to enhance the optical detection and recognition ability and imaging quality under haze conditions has become a key problem to be solved urgently. In this paper,based on the advantage of polarization imaging and dark channel priori principle,a polarization image de-fogging enhancement algorithm is proposed. First,the polarization characteristics are extracted from the collected polarization images,and the polarization degree and polarization angle are calculated. At the same time,the sky region is automatically extracted based on the region growth algorithm,and the atmospheric light parameters are estimated for the sky region,then the atmospheric light polarization degree and polarization angle parameters are estimated. Then,the atmospheric light intensity at infinite distances is obtained by combining the dark channel priori principle,and then the atmospheric light intensity at infinite distances The atmospheric light intensity of each pixel is calculated. Finally,based on the atmospheric physical degradation model,image dehazing and enhancement are realized. In case analysis and verification,through subjective evaluation and objective evaluation,the method proposed in this paper is compared with other common methods. The actual results show that,the algorithm has strong ability of fog removal and enhancement,and it can effectively improve the detection and recognition ability and imaging quality of the optical system. It is of great significance for acquiring key parameters of weapon equipment under haze conditions.

    参考文献
    相似文献
    引证文献
引用本文

游江,刘鹏祖,容晓龙,李斌,徐韬祜.基于暗通道先验原理的偏振图像去雾增强算法研究[J].激光与红外,2020,50(4):493~500

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-04-29
  • 出版日期: